CLEAN-UP AFTER VOLCANIC ERUPTIONS: CONSIDERATIONS FOR ST VINCENT

Josh Hayes, Thomas Wilson
hayes.jlee@ntu.edu.sg
thomas.wilson@canterbury.ac.nz
CONTENTS

• Issues associated with volcanic ash clean-up
• Volcanic ash clean-up process
• Management considerations for different clean-up areas
 • Minor clean-up areas
 • Moderate clean-up areas
 • Major clean-up areas
• Ash remobilisation suppression
• Disposal sites
• Potential considerations for reusing ash
• Summary
IMPACTS TO SOCIETY WITHOUT CLEAN-UP

- Perceived and real **public health hazards**
 - Respiratory, eye, skin irritations
 - Anxiety, frustration, depression

- **Damage** and **contamination** of buildings
 - Roof and structural building component failure
 - Roof corrosion
 - Heating ventilation and air-condition system shutdown
 - Contamination of building interiors - damage to building contents

- Impacts to **infrastructure** systems
 - Road traction reduction / reduced visibility on roads
 - Airport disruption
 - Blocked storm water drains
 - Abrasion / wear and tear on pipes and components
 - Clogged filters on vehicles
 - Power outages

- Each of these impacts **exacerbate impacts** to social and economic activities.
CLEAN-UP: THE ISSUES

- **Huge volumes** of material
 - Resource intensive
 - Costly
 - Time consuming

- Where to **dispose** of ash?

- When to **begin** cleaning up?

- **Prioritisation** of clean-up areas

SCOPING AND PLANNING

Key considerations

- **Health and safety** of clean-up workers
 - Potential hazards from the volcano
 - Hazardous waste
 - Necessary PPE
 - Health and safety advice dissemination
 - Cordon management
 - Traffic management within clean-up areas
- **When** should clean-up commence?
- **Legal/statutory** requirements
- **Stakeholder** identification
- **Public communication**
- **Funding mechanisms**
- **Resource requirements** (labour, heavy machinery, trucks, PPE)
- **Prioritisation** of clean-up areas (e.g. vital roads)?
 - Identifying temporary and permanent disposal sites
- **Management/coordination** of workforce (including volunteer groups)
- **Triggers** for clean-up crew mobilisation if activity continues for long period of time?
ASH CLEAN-UP PROCESS

Ashfall on urban area

Property clean-up

Initial scoping by field managers

Bulk removal from roads

Road cleaning / washing

Disposal /
Clean-up process for Ensenada, Chile (Calbuco 2015 eruption)

Photos: Victor Gonzalez, Jose Villafana, Javier Soto
SCALING CLEAN-UP RESPONSE

• The management requirements may differ between communities as a function of the severity of ashfall.

• At very low accumulations (e.g. < 1mm) coordinated clean-up may not be necessary, other than removal/cleaning of roads.

• At 1-5 mm accumulations, clean-up will be more efficient if it is coordinated. It is possible that private property owners will require assistance to remove deposits from their properties.

• Over 5 mm there will be considerable demand for machinery such as street sweepers, trucks, graders, and diggers. Private property owners likely require assistance for removal.
MINOR CLEAN-UP AREAS

- Areas affected by relatively low deposition of tephra (1-10 mm)
- Roads require cleaning using street sweepers and washing of the roads using sprinkler trucks
- Care will be required to minimise tephra ingress into any stormwater systems
- Advice may need to be disseminated to the public regarding appropriate disposal of tephra
MODERATE CLEAN-UP AREAS

- Coordinated clean-up of both the street areas and private properties in these areas will be necessary for an efficient clean-up response.
- Heavy earth-moving machinery necessary to grade tephra to roadside.
- Careful organisation and management of volunteer groups
- Minor - moderate building damage possible
- Potential for contamination at industrial sites (e.g., tephra loading damage to industrial storage tank roofs)
MAJOR CLEAN-UP AREAS

- Considerable mixing of waste occurs
- May require access restrictions in places for health and safety, and law and order
- Require demolition activities and associated specialised personnel and equipment
- Specialised cleaning required
- Human remains may be present
- Conceivable that some areas may not be fully restored ($$$, landuse change, or life safety risks)
ASH SUPPRESSION DURING CLEAN-UP

- Light sprinkling of water can reduce remobilisation. But, too much water will cause the ash to become cement-like and stick to surfaces, which is difficult to remove.

- Significant water demand can occur during clean-up operations, which have caused water shortages.
DISPOSAL SITES

• Disposal is a **major issue** associated with ash clean-up due to **large volumes** of material requiring management

• A wide variety of dump sites have been used internationally such as:
 • Old quarries
 • Valleys
 • Fields
 • Water bodies such as lakes

• Existing waste management sites should be avoided for ash disposal **if possible**.
 • Reduces design life of the site
DISPOSAL SITE IDENTIFICATION
CONSIDERATIONS

• Operational considerations
 • Size of the site / **how much** ash can be placed on the site?
 • **Access** for heavy machinery (e.g. trucks and diggers)
 • Distance from affected area – **cost** of transportation

• **Long-term** management requirements
 • Slope and land stability issues
 • Potential for erosion
 • Land ownership
 • Potential for negative effects on nearby water supply catchments or groundwater
 • Impacts on sites of cultural / national significance
 • Avoid flood prone areas where possible.
STABILISATION AND REMEDIATION AT DUMP SITES

- **Purpose**: prevent **remobilisation** of the ash over the long term. If no stabilisation is undertaken, ash dump sites can pose an **additional hazard** to nearby communities.

- The **most common** form of stabilisation involves **compaction** and then **capping** deposits with **soil and/or planting vegetation**, which helps **bind** ash together.

- Methods of stabilisation should consider necessary environmental standards.
POTENTIAL USES OF ASH

- Ash can and has been used for a variety of purposes (e.g. cement production and agricultural products), but consideration of the logistical and technical requirements is necessary.
- It is rare for ash from clean-up activities to be used at such a scale to substantially reduce the quantity required for disposal.
- Feasibility studies will be necessary to identify if the ash is of any potential use.
- Potential considerations:
 - Is there a viable market for the product(s)?
 - Does the ash have the necessary physical characteristics for the product?
 - What are the costs and technical requirements to make the ash a viable product?
 - Decontamination / waste separation requirements? Particularly important for highly mixed waste streams (e.g. areas with ash and considerable building damage)
 - Temporary storage requirements?
SUMMARY

- Appropriate waste management processes are required for emergency response and recovery after volcanic eruptions.
- **Scale of clean-up** response will **differ** between communities depending on the **severity of effects** from eruption.
- Clean-up is **resource intensive and time consuming**. Planning **critical** to ensure prioritisation of clean-up resources and coordination is effective.
- **Ash suppression/stabilisation** may be necessary to prevent remobilisation.
- Communication to those conducting clean-up on the necessary processes, health and safety requirements necessary.
- **Disposal site selection** should consider both **immediate needs & potential long-term impacts**.
- Ash **can** be reused, but **rarely in quantities** sufficient to **significantly** offset the amount that requires disposal.